4 research outputs found

    Theoretical and Practical Aspects Related to the Avoidability of Patterns in Words

    Get PDF
    This thesis concerns repetitive structures in words. More precisely, it contributes to studying appearance and absence of such repetitions in words. In the first and major part of this thesis, we study avoidability of unary patterns with permutations. The second part of this thesis deals with modeling and solving several avoidability problems as constraint satisfaction problems, using the framework of MiniZinc. Solving avoidability problems like the one mentioned in the past paragraph required, the construction, via a computer program, of a very long word that does not contain any word that matches a given pattern. This gave us the idea of using SAT solvers. Representing the problem-based SAT solvers seemed to be a standardised, and usually very optimised approach to formulate and solve the well-known avoidability problems like avoidability of formulas with reversal and avoidability of patterns in the abelian sense too. The final part is concerned with a variation on a classical avoidance problem from combinatorics on words. Considering the concatenation of i different factors of the word w, pexp_i(w) is the supremum of powers that can be constructed by concatenation of such factors, and RTi(k) is then the infimum of pexp_i(w). Again, by checking infinite ternary words that satisfy some properties, we calculate the value RT_i(3) for even and odd values of i

    Unary patterns under permutations

    Get PDF
    Thue characterized completely the avoidability of unary patterns. Adding function variables gives a general setting capturing avoidance of powers, avoidance of patterns with palindromes, avoidance of powers under coding, and other questions of recent interest. Unary patterns with permutations have been previously analysed only for lengths up to 3. Consider a pattern p=πi1(x)…πir(x)p=\pi_{i_1}(x)\ldots \pi_{i_r}(x), with r≥4r\geq 4, xx a word variable over an alphabet Σ\Sigma and πij\pi_{i_j} function variables, to be replaced by morphic or antimorphic permutations of Σ\Sigma. If ∣Σ∣≥3|\Sigma|\ge 3, we show the existence of an infinite word avoiding all pattern instances having ∣x∣≥2|x|\geq 2. If ∣Σ∣=3|\Sigma|=3 and all πij\pi_{i_j} are powers of a single morphic or antimorphic π\pi, the length restriction is removed. For the case when π\pi is morphic, the length dependency can be removed also for ∣Σ∣=4|\Sigma|=4, but not for ∣Σ∣=5|\Sigma|=5, as the pattern xπ2(x)π56(x)π33(x)x\pi^2(x)\pi^{56}(x)\pi^{33}(x) becomes unavoidable. Thus, in general, the restriction on xx cannot be removed, even for powers of morphic permutations. Moreover, we show that for every positive integer nn there exists NN and a pattern πi1(x)…πin(x)\pi^{i_1}(x)\ldots \pi^{i_n}(x) which is unavoidable over all alphabets Σ\Sigma with at least NN letters and π\pi morphic or antimorphic permutation
    corecore